
HP-11C

HP-11C Quick Reference
Thimet

Memory & Display

Memory Approx. 204 bytes of memory
Default: 20 number storage registers (7 bytes each) and 64 program steps.
Storage registers are automatically converted to program memory as needed.
4-level stack, Last-X, Index register.
Nonvolatile memory, partially merged program commands

Number
separator

Turn off, press & hold ON, press ".", release ON, release "."
This toggles between using a dot or comma for the decimal separator.

Global
reset

Turn off, press & hold ON, press "-", release ON, release "-"
This clears all permanent memory!

MEM Displays memory assignment in the form "P-56 r-,9"
In this example there are 56 unused program steps and the next storage
register converted to program memory is location ",9"

FIX 0-9 Select fix-point format
SCI 0-9 Select scientific format with exponent
ENG 0-9 Select engineering format with exponent always being a multiple of 3

Clearing Data

← Deletes either the last digit during number entry or the entire X-register
in case number entry has been terminated.
Also used in programming mode, see there

CLEAR ∑ Clear stack and summation registers 0-5
CLEAR PRGM RUN mode: Set program counter to 000

PRGM mode: Erase entire program memory
CLEAR REG Clear all storage registers
CLEAR
PREFIX

Clear prefix key and briefly display all 10 digits of the mantissa

CL X RUN mode: Clear X-register
PRGM mode: Store the CLX command as a program command

Storage Registers & Indirect Addressing

STO 0-9, .0-.9 Store X in the specified storage register.
By default, 20 registers are available

STO + 0-9
STO – 0-9
STO x 0-9
STO ÷ 0-9

Register arithmetic. Only supported for registers 0-9.
RCL register arithmetic is not supported.
To perform register arithmetic with registers .0-.9 use indirect
addressing (see below).

RCL 0-9, .0-.9 Recall number from storage register to X-register
STO I Store X in index register
RCL I –or– f I Recall value from index register
X↔I Exchange X with index register

1

HP-11C

STO (i) Store X in the register pointed to by I.
Values of I and corresponding registers:
0-9 → R0-R9, 10-19 → R.0-R.9, 10 → I

STO +–x÷ (i) Perform indirect register storage arithmetic
RCL (i) –or– f (i) Recall value from the register pointed to by I
X↔(i) Exchange X with the register pointed to by I
RCL ∑+ Recall ∑x and ∑y from the summation registers into X & Y
LST X Recall last value of X-register as is was before the previous operation

Functions (Selection)

RAN# Create random number 0 ≤ X < 1
STO f RAN# Store X as the new random number seed
→ P Convert (X=x,Y=x) from orthogonal to polar coordinates

(X=r,Y=θ)
See label on the back of the calculator

→ R Convert (X=r,Y=θ) from polar to orthogonal coordinates (X=x,Y=x)
→ H.MS Convert fractional hours to hours, minutes & seconds H.MMSSs
→ H Convert hours, minutes & seconds H.MMSSs to fractional hours
→ RAD Convert degress (360) to radians (2π)
→ DEG Convert radians (2π) to degress (360)
Py,x Permutations = Y! / (Y-X)!

Number of possibilities to select X elements from a group of Y different
elements where different sequences count separately.

Cy,x Combinations = Y! / [X! • (Y-X)!]
Number of possibilities to select X elements from a group of Y different
elements where different sequences do not count separately.

x! Faculty and Gamma. Calculates Γ(x+1)=n! for positive and non-integer
negative numbers

RND Rounds X to the number of currently displayed digits
FRAC Returns the fractional part of X
INT Returns the integer part of X
yx Y to the power of X. Works also for negative Y in case X is integer
% Calculates X percent of Y. Does not pop the stack!
∆% Percential difference from Y to X. Does not pop the stack!

Trigonometric Functions

DEG Set trig mode "degrees" (360)
RAD Set trig mode "radians" (2π), indicated in display
GRD Set trig mode "grad" (400) , indicated in display
SIN COS TAN Trigonometric functions, performed in current

mode (DEG, RAD, GRD)
SIN-1 COS-1 TAN-1 Inverse trig functions
HYP SIN HYP COS HYP TAN Hyperbolic functions (independent of trig mode!)
HYP-1 SIN HYP-1

COS
HYP-1 TAN Inverse hyperbolic functions

2

HP-11C

Summation & Statistics

General The statistics registers occupy the storage registers 0-5, see calculator's
back label. See section Clearing Data for statistics register deletion.
Stats registers can also be used for vector addition and substraction!
Register usage: 0=n, 1=∑x, 2=∑x2, 3=∑y, 4=∑y2, 5=∑xy

∑+
STO ∑+

Add X and Y to the stats registers.
This will display the total number of entries and disable stack lift so that the
next entry will overwrite the count.

∑- Substract X and Y from the stats registers
RCL ∑+ Recall ∑x and ∑y from the summation registers into X & Y
x Calculate ∑x & ∑y mean value and place result in X & Y
 s Calculate ∑x & ∑y standard deviation and place result in X & Y.

sx=SQRT[{n∑x2 – (∑x) 2} / {n(n-1)}]
 L.R. Linear regression. Calculates a straight line thru the (X,Y) data points and

returns the slope of the line in Y and the y-offset in X
y,r This function assumes a straight line thru the (X,Y) data points and

calculates for a given X the approximatedy value which is returned in X.
In Y this function returns an estimate how close the data points come to a
straight line. +1 indicates that all points lie on a line with positive slope, -1
indicates that all points lie on a line with negative slope, 0 indicates that an
approximation by a straight line isn't possible.

Programming

P/R Toggles between RUN (program execution) and PRGM (program entry)
mode. See section Clearing Data for program memory and program step
deletion.

SST RUN: Display and execute next program step
PRGM: Step forward thru program

BST RUN: Display and go back to previous program step but do not execute
any program code

PRGM: Step backwards thru program
Inserting &
deleting
steps

• Program entry starts with line number 1
• Line "000-" indicates the start of the program space
• Commands are inserted after the currently displayed line
• Delete the currently displayed instruction with ←
• Program code values indicate the row & column of a command with

the exception that numbers are displayed as such. Prefix key have
their own code. Example:
001-42.21. 0 corresponds to "LBL 1" (42=f, 21=SST/LBL, 0=0)

f A-E RUN: Execute program starting at the given label. An error occurs if the
label is not found. Any keypress will halt the program!

PRGM: Insert a "GSB label" command
USER Normally, f A-E must be pressed to execute a program, see above.

In USER mode the prefix-f is not needed, ie. pressing ex will immediately
execute the program starting at label B.
Use the prefix-f to reach the keys normal function.
USER mode is indicated in the display

3

HP-11C

R/S RUN: Continue program at current program counter
PRGM: Insert R/S command which will halt the program at this location

RTN RUN: Set program coutner to 000
PRGM: Insert a RTN instruction. This will return from a subroutine or at

the top level end the program and set the program counter to 000
GTO . nnn RUN & PRGM mode: Jump to program line nnn
GT0 0-9, A-E RUN: Set program counter to the specified label

PRGM: Insert a GTO instruction
GSB 0-9, A-E RUN: Execute the program starting at the given label

PRGM: Insert a GSB instruction. A maximum of four subroutine calls can
be nested

Flags There are two flags, 0 and 1. SF n: Set flag n, CF n: Clear flag n
F? n: Execute next step if flag is set, skip next step if flag is clear

Comparisn X=0, X≠0, X>0, X≤0, X=Y, X≠Y, X>Y, X≤Y
If camparisn is false: Skip the next program step
If camparisn is true : Execute the next program step

PSE Halt program for about 1 second and display the X-register

Using The Index Register In Programs

GTO I Jump to the label indicated by the I register.
Only the integer part of I will be used! Values of I and associated labels:
If I≥0: 0...9 → LBL 0...LBL 9, 10...14 → LBL A...LBL E
If I<0: Jump to the line number indicated by the absolute value of I.

Ie. if I=–5.3 the jump will go to line number 5.
GSB I Perform subroutine call to the label indicated by the I register
ISG Increment and skip if greater.

This loop command uses the index register I which must contain a value
in the form nnnnn.xxxyy where:

±nnnnn: Current (initial) loop counter value
xxx: Comparisn value for loop counter
yy: Loop counter increment (or decrement for DSE), if y=0 then

1 is used instead
ISG first increments n by y and then compares the new n to x:

If n>x the next program step is skipped
If n≤x the next program step is executed

Ie. if initially I=0.023 then the loop will run from 0 to 22 (or 1 to 23)
DSE Decrement and skip if equal (or smaller).

DSE first decrements n by y and then compares the new n to x:
If n≤x the next program step is skipped
If n>x the next program step is executed

4

